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NOTICES

When Government drawings,
specifications, or other data
are used for any purpose other
than in connection with a de-
finitely related Government
procurement operation, the
United States Government there-
by incurs no responsibility
nor any obligation whatsoever:
and the fact that the Govern-
ment may have formulated, fur-
nished, or in any way supplied
the said drawings, specifica-
tions, or other data, is not
to be regarded by implication
or otherwise as in any manner
licensing the holder or any
other person or corporation,
or conveying any rights or per-
mission to manufacture, use,
or sell any patented invention
that may in any way be related
thereto.
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ABSTRACT

From the "Jitterbug" concept
of R. Buckminster Fuller a
new concept of expandables
was derived. The Rotation-
Translation Transformation
of Platonic Polyhedra. The
investigation within this
report illustrates the trans-
formation concept and pre-
sents filling concepts sStem-
ming from the transformation.

Three concepts for filling
the void areas created by
face rotation-translation
transformation of Platonic
Polyhedra are presented.

One concept utilized the
transformation concept it-
self in conjunction with the
transformation concepts:
Double Rotation-Translation
Transformation. The other
two concepts depend upon long
recognized expandable concepts:
Folding Rotation-Translation
Transformation and Fanning
Rotation-Translation Trans-
formation.
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INTRODUCTORY NOTE

In order to make the transformation more meaningful and to
aid in visualizing the series, stereo photographs have been
used. With the use of stereo photographs a three dimension-
al effect can be obtained, which will allow the reader to
grasp the transformations more quickly. With the aid of the
stereo viewer supplied with the report and by following the
simple steps outlined below, little difficulty will be in-
curred in obtaining the stereo effect.

How to Use the Stereo Viewer

1. Place the report directly in front of you, so that the
page lies flat.

2. Place viewer and picture toward a light source. Both
stereo pictures must be illuminated equally without any
shadow.

3. Make sure the bottom edge of the stereo pictures is
parallel to the line between the lenses. (Some defects
of vision may necessitate a slight twist off the paral-
lel.) Both pictures must be level--one must not be
higher than the other.

4. If you wear glasses, use them while viewing.

5. In some cases, focusing may be improved by raising or
lowering the viewer.

6. If you don't see stereo immediately, relax your eyes as
if gazing into a distance; this will put your eyes in
parallel so that the pictures fuse together and combine
into one.

7. Give your eyes a fair amount of time to fuse the stereo
pictures; only 8% of the people cannot see stereo.

8. By following the above procedure and after a little
practice all other viewings will come with little effort.

9. If it gets dirty, the stereo viewer should be cleaned
only with a soft white cloth.




Try out the stereo viewer on the
stereo pair shown here,following

the procedure suggested on the
previous page.
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I. INTRODUCTION & BACKGROUND

With the increase in technological change which is
manifest around us, we never cease using materials and
knowledge congruently in everything that is created or
evolved today. We no longer use one area as an entity with-
in itself but co-ordinate and unite it with other areas to
advance ideas, concepts, and designs. The conventional
boundaries between sciences are found to be neither fixed
nor absolute. An increasing tendency has been to explore
in every science those areas that lie near the boundaries,
and this has inevitably led to the crossing of these bounda-
ries. Most researchers, however, who are in a border pro-
vince have to specialize in their province almost as narrow-
ly as those who work within a single discipline. They con-
centrate on a particular problem, straddling the border,
just as the researcher within a more conventional field
concentrates on a particular problem lying within that field.
Yet, in our industrial-technological culture today, there
is a definite need for researchers who can cross the lines
and make use of the language arts, mathematics, sciences,
and social sciences and who can become involved in study,
experimentation, and the application among these areas.

With the complexity of our technological environment utiliz-

ing the specialized sciences in relationship to each other,
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it is most desirable to include researchers who can co-
ordinate research done in many areas.

One area of concern here, that draws upon many fields,
and crosses over many boundaries, is that of structural de-
sign concepts for aerospace application. The use of struc-
tures to house and protect the variety of objects man builds
will be needed to aid in his conquest and exploration of
space. Of the variety of structural design concepts, con-
siderable attention has been brought to bear on the potential
of expandable structures for aerospace applications. The
possibility of fabricating a structural configuration on
earth, packaging it in a small container for launch, and
expanding it upon command to a predetermined size and shape
has distinct and obviousadvantages.

According to Webster's Dictionary the word expand in-
dicates increase in extent. Therefore, the use of the term
expandable structures has a broad connotation. It includes
any structure that geometrically expands--occurring along
one axis only; it may also mean an increase in two directions;
or it may mean expansion in any direction utilizing three
or more axes.

There are generally three classifications in which ex-
pandable structures for aerospace applications fall:*

Inflated, pressure-stabilized structures;

Inflated, rigidized structures;

Mechanically expanded, framework stabilized structures.

*Aerospace Expandable Structures 1., p. 7.
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The mechanically expanded or rigid system "is made up of
rigid components compacted into a small package which, upon
signal, rearrange themselves to provide for greater surface
area and enclosed volume'* Five basic concepts have been
considered as applicable to rigid expandable structures--
one is relatively new and little in regards to application
has been done with it.” A sixth concept shall be introduced

later in this report.

Figure 1
Telescoping Concept:

The telescoping mechanisms consist of a series of
rigid components that translate on a common axis sliding in
and out of each other, thus permitting unidirectional ex-
pansion in packing.

*Wright, F. N. 1., p. 11.

TLebovits, M. et al; Wright, F. N. 1., pp. 11-16.



Figure 2

Folding Concept:

‘ The folding mechanisms consist of a series of rigid bars
and/or panels which are hinged together at the ends or sides.

They are expanded or compacted about their hinged joints un-
til they lie in a predetermined position.

Figure 3
Fan Concept:

The fan concept entails rotatiqn of rigiq components
in common planes about a central axis. By this means, an
expanded or compacted structure results.

-4-




Figure 4
Umbrella Concept:

the umbrella concept utilizes rigid component rotation
in mutually perpendicular planes about a common point.

Figure 5

Variable Geometry Concept:

The variable geometry concept utilizes frame arches and
a base ring. The arches are attached about the base ring
and by means of hinging and actuating, the arches can be ro-
tated to assume the desired configuration. The arches lie
in one plane in the compressed state; in the deployed state
they are rotated to assume a three-dimensional structural

framework.




I1 THE TRANSFORMATION OF
POLYHEDRA

It has long been known that spheres closely packed
around a central sphere do not form a larger sphere. A
polyhedron, however, bounded by 14 faces is formed. This
polyhedron consists of six squares and eight triangles.

R. Buckminster Fuller, in his discussion of Energetic-
Synergetic Geometry, refers to this 14-faced geometric con-
figuration as the Vector Equilibrium.

The polyhedron, commonly known as the Hexoctahedron or
Cuboctahedron, is literally an equilibrium of vectors. The
value of its radial vectors is exactly the same as that of
its circumferential vectors.* The length of the distance
from any of the polyhedron's center to its vertices is equal
to the length of any of its elements. For this reason an
equilibrium exists where the lines of force radiate from its
center, and bind inward around its periphery.

Fuller indicated that the removal of the center sphere
would cause a significant change in the close packing of
spheres, a 20-sided polyhedron would result--an <cosahedron.
This change suggested that a Vector Equilibrium could be
translated into an icosahedron and vice versa. The same
number of surface-defining spheres exist between the two
polyhedra and they both have 12 vertices. Each has sym-

metrical similarities. A family of relationships which is

*Marks, R. W. 1., p. 41.
-6-




capable of cycling through a sequence of phases existed
which Fuller called "Regenerative”. This sequence of phases
can be visually illustrated with the construction of (as
Fuller calls it) the "Jitterbug”.* The sequence starts with
the Vector Equilibrium and when released it compresses sym-
metrically into an icosahedron and then into an octahedron.

Through investigation of Fuller's "Regenerative” and
coordination with research conducted on the Platonie and
Archimedean Polyhedra a very unique concept of polyhedral
transformation was derived.’ This sixth:F concept of expand-
able structures using rigid expandable components came to
light only recently through the efforts of Duncan Stuart of
the School of Design, North Carolina State University. His
article, "Polyhedra and Mosiac Transformations," 1963, re-
ports his findings.

The concept of polyhedral transformation incorporates
the use of the familiar regu]ar“and semi-regular polyhedra.
It introduces a new dimension to the old "classical" con-
cept of polyhedra transformation** by introducing a new

concept of Rotation-Translation Transformation of polyhedra.

*Marks, R. W. 1., p. 42; See figure 6.

TAn interview held with R. Buckminster Fuller on 3 May
1965.

¥The other five expandable concepts are discussed in
the preceding chapter.

|‘See Figure 7.

**See Figure 8.




In contrast to the "classical" method of transformation of
polyhedra this new concept maintains dimensionality during
transformation and generates a polyhedral form without re-
course to any special knowledge other than the rules of
transformation described in Table I.

This concept of Rotation-Translation Transformation is
characteristic of all regqular and semi-regular polyhedra
(Table II1). By allowing each surface to rotate about its
axis, translate along its axis, and maintain connection with
one of its paired vertices; the surfaces enclosing the poly-

hedron will transform into another polyhedral form.*

Figure 6

"Jitterbug"
The Vector Equilibrium Phase

The Vector Equilibrium is constructed with circumfer-
ential vectors only and with flexible joints.

*See Figure 9.



Figure 6 (continued)
"Jitterbug"

The Icosahedron Phase

As the top triangle is lowered toward the opposite tri-
quatorial rotation moves the vertices into the Ico-

phase. NOTE: That each of the pairs of opposite

, although in motion, maintain an axial relationship.

The Octahedron Phase

The completion of the cycling results in the phase of
an Octahedron.




- — o o

Tetrahedron Hexahedron

Icosahedron \

Octahedron Dodecahedron

Figure 7
Platonic Solids

A convex Polyhedron is said to be "regular" if its
faces are regular and equal, while its vertices are all
surrounded alike. Eulers's theorem states thatV + F = E +
2, where V, F, E are respectively the number of vertices,
faces, and edges. It can be shown that there are only five
reqular convex Polyhedra. These Platonic solids are the
Tetrahedron, Cube (Hexahedron), Octahedron, Icosahedron,
and (Pentagonal) Dodecahedron.

-10-




Icosahedron-Dodecahedron

Figure 8
Classical Transformation of Platonic Solids

The Cube is converted into a Tetrahedron by an alter-
nate removal of vertices. The Tetrahedron is converted into
an Octahedron by truncation of its vertices. The Octahedron
is transformed into the Icosahedron by a somewhat more com-
plex truncation, and similarly the Icosahedron is converted
into the Dodechedron. A prior knowledge of the forms is
necessary before the complete series of transformation may
be accomplished.

«11-




TABLE 1
DEFINING RULES FOR REGULAR AND SEMI-REGULAR POLYHEDRA*

A Regular Polyhedron must enclose a volume of space with
a surface composed of only one kind of plane polygon.
These plane polygons must be equilateral, equiangular,
and rectilinear.

The polygons must mutually join at their edges and ver-
tices so as to completely fill a single imaginery spheri-
cal surface passing through the joined vertices.

In a similar fashion, a Semi-regular Polyhedron must be
totally composed of plane polygons as defined in 2--

but now, more than one kind of polygon may be used in a
single polyhedron.

There must be the same numbers and kinds of polygons,
joined in the same order (or its enantiomorph), at each
of the vertices of the polyhedral surface.

For Regular and Semi-regular Polyhedra, the corner angles
which join at a single vertex must total in aggregate,
less than 360°.

The plane of any polygon, if extended, must not pass
through the interior volume of the polyhedron. And, a
plane passed through the polyhedron at random will always
have a single closed polygon at its line of intersection

with the polyhedral surface.

*Stuart 1., p. 5.
-12-




CHARACTERISTICS OF
REGULAR AND SEMI-REGULAR

(TABLE I1)

THE

POLYHEDRA

"o
e 2 o Designation "
- [} = < = [}
Name =2 ¢ 2T 5 8 & Schidf1i " " °
T2 3 2 % S5 0 Symbol* o v ¥
os T o @© O o o] © o
wl - wv) o. hn = (=] o w oy =
Tetrahedron 4 - - - - - 33 4 6 4
Cube - 6 - - - - 43 6 12
Octahedron 8 - - - - - K 8 12 6
Oodecahedron - - 12 - - - 53 12 30 20
Icosahedron 20 - - - - - 35 20 30 12
Truncated Tetrahedron 4 - - 4 - - 3. 62 8 18 12
Cuboctahedron 8 6 - - - - (3. 4)2 14 24 12
Truncated Cube 8 - - - 6 - 3 . 82 14 36 24
Truncated Octahedron - 6 - 8 - - 4 . 62 14 36 24
Small rhomicubocta- 8 18 - - - - 3. 43 26 48 24
hedron
Great rhomicubocta- - 12 - 8 8 - 4 .6 . 8 26 72 48
hedron
Snub Cube 32 6 - - - - 3« . 4 38 60 24
Icosadodecahedron 20 - 12 - - - (3 .5)2 32 60 30
Truncated dodecahedron 20 - - - - 12 3 ..102 32 90 60
Truncated icosahedron - - 12 20 20 - 5 . 62 32 90 60
Small rhomicosidodeca- 20 30 12 - - - 3.4 .5 62 120 60
hedron
Great rhomicosidodeca- - 30 - 20 20 12 4 .6 .10 62 180 120
hedron
Snub dodecahedron 80 - 12 - - - 3+ . 5 92 150 60

*Kravitz 1., p.

119.
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. -
Rotation Translation

Octahedron

Icosahedron

Hexoctahedron

Figure 9
Transformations
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IIT THE RESEARCH CONDUCTED

The Problem

A known configuration and the number of faces exist
prior to the transformation of a polyhedron. At the comple-
tion of the transformation the size and number of original
faces still exist; however, they have been translated into
a new position creating a new polyhedron form and introduc-
ing new faces that had not existed previously. The new
faces created during the transformation take the form of
void areas and, being unique in themselves, have definable
limitations.

The problem was to conduct a conceptual investigation
of Rotation-Translation Transformation of Platonic Polyhedra
to determine means of filling the void areas created during
the transformation. As a separate entity to the problem,
patterns and similarities among the transformations are

illustrated showing commonness and orderliness among them.

Significance of the Problem

The most ideal situation for expandable structures
would be to compress the system into an extremely small,
l1ightweight package for transportation purposes and deploy
it into the desired configuration after delivery to the
desired location. This may be accomplished by using the
concept of Rotation-Translation Transformation of Polyhedra.
The rigid expandable structure is made up of rigid components

-15-



compacted into a small package which can rearrange themselves
to provide for a greater surface area and/or enclosed volume
(Tables III and 1IV).

Expandable structures have been receiving considerable
attention in the last few years by NASA. As NASA points out,
the possible applications of expandable structures which
have been proposed in the last few years include almost
every conceivable aerospace structure. Such areas are:*

1. Launch vehicles

2. Unmanned space vehicles

3. Manned space vehicles

4, Re-entry structures

5. Vehicle extensions and secondary structures

6. Exploration base structures

The specific applications in which expandable struc-
tures may be used are limitless and need not be discussed
here. However, very definite advantages are pertinent. The
principal advantage of expandable structures in all applica-
tion areas is their ability to be packaged into a relatively
small, efficiently shaped volume. Ease of erection is an
advantage associated with packaging and can also be attain-
ed. Very often expandable structures show a decided weight
saving advantage over either rigid or erectable configura-
tions. One advantage which is of specific interest here and

is unique to the transformation concept is that of dimensional

*Koleum, H. E. 1., pp. 89-92.

~16-




stability. Dimensional stability includes more than the
elastic and inelastic deflections of a structure under load.*
Membrane structures, used so extensively in many expandable
systems, resist normal loads by radial changes in shape so
that the load is supported everywhere in tension. This

would also be true with the use of the transformation con-
cept.

In order to make the transformation concept a practi-
cal instrument, much research needs to be done with it. It
is from this need that this study stems in an attempt to
answer one of the many questions arising from the initial

concept.

Delimitations

The polyhedral forms investigated were limited to the
Platonic and Archimedian Polyhedra as described in Tables I
and II.

The investigation was further limited to the Rotation-
Translation Transformation of Platonic Polyhedra.

Only rigid components were used in the filling of the

void areas.

Procedure
The solution to the problem was approached by:
1. Investigation of the platonic solids used in the initial

transformation. During this phase of the study, the

*Wright, F. N. 1., pp. 11-16.

-17-




IT.

ITI.

Iv.

platonic solids were defined and pertinent characteristics
and similarities noted. The angles and surface configur-
ation studies were determined for the necessary drawings
and models that were constructed.

Investigation of Rotation-Translation Transformation of
Platonic Polyhedra. The underlying theory of transfor-
mation was defined and 1imited. Transformation calcula-
tions were determined to further aid in the collection

of data necessary for determining similarities and charac-
teristics existing among the forms. This data was noted
and used further for the construction of the drawings and
models.

Investigation of the polyhedron forms created by the
transformation of the platonic and Arechimedian Polyhedra.
The forms created by the transformation were investiga-
ted to facilitate defining and determining the charac-
teristics and similarities existing among these forms.
The investigator attempted to find coordinates for the
vertices of these solids and examined the cases where

one could be inscribed in another. Further calculations
were conducted to aid in the accumulation of the needed
data.

Construction of drawings and models. Using the data
previously found, drawings and constructions of models
showing the transformation series was completed.

Investigation of the void areas created during the

-18-




VI.

transformation. This phase was conducted throughout the
previous phases of this investigation. With the aid of
the calculations made and the drawings and models con-
structed, means of filling the void areas created during
the transformations were determined.

Interpretation of data. The data found during the in-
vestigations conducted during previous phases was ana-
lyzed for possible similarities and patterns arising.
This analysis was conducted through the use of various

tools which were deemed necessary throughout the study.

-19-



(Table III)

Surface Area Increase of the Transformations

Element Unit = 1

Polyhedron
Transformation

Area of
Polyhedron

Increase in Area
of Polyhedron

Tetrahedron 1.
1.7

Octahedron 3.5
Octahedron 3

EG.O
Hexoctahedron TR
Hexahedron e
Hexoctahedron
Icosahedron

Icosadodecahedron

Dodecahedron

Icosadodecahedron

30 25 20 15 10 5 0 5 10 15 20 25 30

-20~




(Table 1V)

Volume Increase of the Transformations

Element Unit = 1

Polyhedron Volume of Increase in Volume
Transformation Polyhedron of Polyhedron
Tetrahedron 0.1
E§0.3
Octahedron
Octahedron
.
s
Hexoctahedron 2; 4
Hexahedron ].dg
E§.4
2o
Hexoctahedron 2.43
[
Icosahedron ZSEE
Icosadodecahedron
Dodecahedron
Icosadodecahedron

18

15 12 9 6 3 0 3 6 9 12 15 18

-21-




IV THE CONCEPTUAL INVESTIGATION

The Polyhedron

Hoppe, in 1882, coined the word polytope: a geometri-
cal figure bounded by portions of lines, planes, or hyper-
planes; in two dimensions it is a polygon, in three a poly-
hedron* The foundations for this subject were laid, however,
by the Greeks over two thousand years ago, with the findings
of Euclid. Others such as Klein and Schiafli and Coxeter
introduced much to the concepts of the polytope. The area
of interest in this report is that of the polyhedral forms
of the polytypes, specifically, the regular (Platonic) and
Quasi-Regular polyhedra.

The five, so-called Platonic polyhedra, from the sim-
plest group of the polyhedra. 1In Euclid's writings, The
Elements, explanation and definition is given to the five
regular solids as known to the ancient world. These convex
polyhedra are said to be regular if they each have regular
and equal faces, if they are congruent, and if their vertices
are regular polyhedral angles. (Tab]e.I, Chapter II) The
five regular polyhedra are: (1) Tetrahedron, (2) Hexahedron
(cube), (3) Octahedron, (4) Icosahedron, and (5) Dodeca-
hedron. Also illustrated are the two quasi-regular poly-

hedra: (6) Cuboctahedron, and (7) Icosadodecahedron.t

:Coxeter, H. S. M. 1., p. ix.
See Figure 10.
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Figure 10

Regular and Quasi-Regular Polyhedra

The quasi-regular polyhedra are solids having regular
faces, while their vertex figures, though not regular, are
cyclic and equiangular: encriptible in circles and alternate
sides.* These two polyhedral forms along with five regular
polyhedra round out the family of polyhedra encompassing this
study.

As was illustrated in Figure 9 (Chapter II), the trans-
formation was derived from a combination of two of the three
"primitive" transformations: translation (in a certain
direction, through a given distance), and rotation (about a
certain line or axis, through a given ang]e).Jr Note the
duality of the five regular polyhedra.* The tetrahedron is
self-dual; the hexahedron is a dual of the octahedron;

octahedron, dual of a hexahedron; the icosahedron, dual of

*Coxeter, H. S. M. 1., pp. 17-20.
TCoxeter, H. S. M. 1., pp. 33-38.
fcandy, H. M. 1., pp. 76-82.
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the dodecahedron; and the dodecahedron is a dual of the
icosahedron.*

Table V shows the transformations of the Platonic poly-
hedra and illustrates the use of the duals. The combination
of duals will transform into another polyhedral form contain-
ing the totals of their faces, thus increasing both surface
area and volume. Two tetrahedra transform into the octa-
hedron; the octahedron and hexahedron combine to make the
quasi-regular polyhedron: hexoctahedron and the icosa-
hedron and dodecahedron form the quasi-regular polyhedron:
icosadodecahedron.+

From investigation of these polyhedral forms, concepts
of transformations, and the concept of dualities; three
basic conceptual solutions were derived for filling the void
areas created during the transformation of the Platonic
polyhedra: Double-rotation-translation transformation,
Folding rotation-translation transformation, and Fanning

rotation-translation transformation.

Double Rotation-Translation Transformation

The double rotation-translation transformation concept
makes use of the characteristics of duality. As illustrated
in Figures 19-21, the dual of the polyhedral form will fill

the void areas created during the transformation of the ini-

*See Figures 11-13.

+See Figures 14-18.

-24-




tial polyhedron. (i.e. the tetrahedron with its dual tetra-
hedron transform together to fill each other's void areas)*
The characteristics that are common to both forms and make
this filling possible are: the element lengths are the same
for the initial polyhedron and the filling polyhedron and
vice versa; and the rotation and translation of faces in
each transformation are equal. It must be noted here, how-
ever, that with this concept there is surface interference
with the dual pairs: tetrahedron, tetrahedron; and octa-

hedron, hexahedron.+

But, with the dual pair dodecahedron,
icosahedron, the icosahedron can be contained within the

) ¥
dodecahedron and no surface interference results.

Folding Rotation-Translation Transformation and Fanning Ro-

tation-Transiation Transformation

The two filling concepts, Folding and Fanning rotation-
translation transformation, make use of the Folding concept
and Fan concept of expandable structures. As illustrated in
Figures 22-26 the appropriate polygon face is hinged and
either fanned or folded into the void area thus filling the
voids created during the transformation of the polyhedron.
With the aid of the polyhedral nets, the surface hinging
positions can be readily seen. It must be noted that the

hinging of square faces, in the case of the octahedron trans-

*See Figure 19.
Tsee Figures 19-20.

1;See Figure 21.
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formation, and the hinging of the pentagonal faces in the
case of the icosahedron transformation, became very awkward
and would perhaps be difficult to pack.* The polygons,
however, that are used to fill the void areas in these cases
may be sectioned into triangles and hinged from each side

of the existing faces and locked into their square or pen-

tagonal position after the 'cransfor‘mation.Jr

*See Figures 24 and 25.
Tsee Figure 27.
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Figure 11

Dual Family Tetrahedron-Tetrahedron

Figure 12

Dual Family Dodecahedron-Icosghedron

Figure 13

Dual Family Hexahedron-Octahedron
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TABLE V

TRANSFORMATIONS OF
PLATONIC POLYHEDRA

TETRAHEDRON > OCTAHEDRON* +
OCTAHEDRON ICOSAHEDRON—————— HEXOCTAHEDRON
HEXAHEDRON —~ HEXOCTAHEDRONT
ICOSAHEDRON = [COSADODECAHEDRON"
DODECAHEDRON » ICOSADODECAHEDRON**
VERTICES FACES EDGES AG
TETRAHEDRON 4 4 6 4 - -
OCTAHEDRON 6 8 12 8 - -
HEXAHEDRON 8 ) 12 -6 -
ICOSAHEDRON 12 20 30 20 - -
DODECAHEDRON 20 12 30 - =12
HEXAHEDRON 12 14 24 8 6 -
ICOSADODECAHEDRON 30 32 60 20 - 12
FACES FACES
EXISTING
Existing Void
TETRAHEDRON A -4 OCTAHEDRON A -4—A -4
OCTAHEDRON A -8 HEXOCTAHEDRON A -8::>t3 -6
HEXAHEDRON J -6 HEXOCTAHEDRON O - A -8
ICOSAHEDRON A-20 ICOSADODECAHEDRON A-20—_ < -12
DODECAHEDRON <-12 ICOSADODECAHEDRON <¢-12— A-20
*See Figure 14
Tsee Figure 15
fSee Figure 16
“See Figure 17
**See Figure 18.
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Tetrahedron | !

Octahedron

Figure 14

Transformation of Tetrahedron
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Hexoctahedron

Figure 15

Transformation of Octahedron
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Hexoctahedron

Figure 16

Transformation of Hexahedron
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Icosadodecahedron

Figure 17

Transformation of Icogahedron
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Dodecahedron

Figure 18

Transformation of Dodecahedron
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Figure 19

Double Transformation of Tetrahedron-Tetrahedron
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Figure 20

ormation of Hexahedron-Octahedron

4

Trans

Double
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Figure 21

Double Transformantion of Icosahedron-Dodecahedron
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Folding

N -+
werv

Fanning
Figure 22

Folding-Fanning Transformation of Tetrahedron
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Folding

Fanning
Figure 23

Folding-Fanning Transformation of Octahedron
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Fanning
Figure 24

Folding-Fanning Transformation of Hexahedron
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Folding

Net

Fanning
Figure 25

Folding-Fanning Transformation of Icosahedron
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Fanning
Figure 26

Folding-Fanning Transformation of Dodecahedron
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Figure 27

Polygon Sectioning For Filling Voids
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v SUMMARY AND CONCLUSIONS

Man has continually preoccupied himself with seeking
various kinds of order within his environment. One group of
scholars who studied orderliness was the Greeks who envision-
ed what we call polyhedra. Another display of order was
found by Haechel. The radiolaria (microscopic skeletons of
sea creatures) that he discovered had many of the properties
of polyhedra occuring in nature. And in more recent times
the study of closest packing of spheres revealed close re-
lationships to polyhedra.

In 1947, R. Buckminster Fuller presented, through his
studies of closest packing, the "Jitterbug"” which illustrated
a new concept of the orderliness of polyhedra. Through the
studies stemming from the "Jitterbug"” evolved the transforma-
tion concept of polyhedra. In contrast to the classical
transformation the rotation-translation transformation con-
cept has an orderly characteristic about it. The rotation-
translation transformation concept introduces a new means of
expanding a structure. Expansion is accomplished by allowing
each face of a polyhedron to rotate about its axis, translate
upon its axis, and maintain connection with one of its paired
vertices; by doing so one polyhedron form is transformed into
another form with more surface area and a larger volume.

Prior to the translation a known configuration and number

of faces exist, and after the transformation another con-
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figuration exists with an increased number of faces. The con-
figuration after the transformation maintains only the number
of faces that it began with and the increased number exists

as voids. This study revolved around conceptual means for
filling these voids created during the transformation. Three
concepts for filling the voids were presented: double rotation-
translation transformation, fanning rotation-translation trans-
formation, and folding rotation-translation transformation.

The first concept takes advantage of polyhedra duals and
the transformation concept itself, and uses the duals to fill
each other. The disadvantages to this concept is that there
is surface interference existing except in the case of the
icosahedron, dodecahedron dual.

The latter two concepts make use of the "classical”
folding and fan concepts. Faces are hinged to the existing
surfaces and are either folded or fanned into position. A
disadvantage existing around these two concepts is the awkward-
ness of hinging the square polygons in the case of the octa-
hedron transformation and the hinging of the pentagonal poly-
gons in the case of the icosahedron transformation. By
dividing these awkward surfaces, however, into triangular
polygons and locking them into position after the transforma-

tion the awkwardness is deleted.
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PROJECTED RESEARCH

With the introduction of the transformation concept, an
entire new area was opened for research. This report dealt
only with one minute entity of the concept. The research
done, however, introduced many problem areas yet to be in-
vestigated.

Several conceptual studies proposed for further research
stem from the investigation discussed in this report. One
such area indicated is an investigation of the forms created
during the transformation of polyhedra as illustrated in
Figure 28. Instead of the face rotation-translation trans-
formation discussed in this report, a concept of element face
rotation-translation transformation is used.

Another area needing study is that of the Archimedian
or semi-regular polyhedral forms which may ultimately lead
into the familiar Geodistic Icosahedron or Fuller domes. It
was noted during the investigation that similarities did
appear among the regular polyhedron and the geodistic con-
figurations used in construction of spherical domes.

Another interesting concept that may warrant investiga-
tion is that of polyhedral cycling. It was noted in filling
the void areas created during the transformation that if an
appropriate number of faces were used instead of a single
face to fill the void, a cycling effect took place. The
faces to be used need to have the same length of element as

the existing surfaces. They also need to be equal in number
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to the existing exposed sides. (i.e. the octahedron trans-
forms into the hexoctahedron leaving square void areas. In-
stead of filling the voids with square surfaces, they are
filled with four triangles that match the existing surfaces.
The result is the original octahedron form only enlarged in
volume and surface area. The original transformation axis is
retained and the cycling can be repeated.)* It is conceivable
that through locking and retransforming the cycling could

take place as many times as physically or mechanically pos-
sible.

There is also inieed Tor nard

e o -;-..

.3 .
ware iveéstigatTio

~ + N
ga onhsS T0 answer

the problems of jointing, hinging, rotating, translating
and transforming the polyhedra. There are unique characteris-
tics which warrant investigation in these directions to aid
in applications of the transformation concept.
It is quite evident that there is much needed research
to make the transformation concept an applicable one for

practical expandable structures.

*See Figure 29.
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Truncated-tetrahedron

Figure 28

Element Face Rotation-Translation Transformation

Octahedron

Figure 29
Polyhedron Transformation Cycle
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APPENDIX

PROPERTIES OF THE PLATONIC

SOLIDS + 2

In the following tables showing
the properties of the regular
polyhedra, the vertices are
given in terms of the Cartesian

co-ordinates.

In each poly-

hedron the most important di-
mensions are given in terms of
a simple choice of dimension

edge.

The dimensions are ex-

pressed in terms of the units
chosen for the edge.* Each
one is then computed for a
unit edge of 4.

Ventrices
Edge

Face diagonal
Body diagonal
Area of Face

Volume

(TABLE VI)

CUBE

"
(o]
m

ft

12

Dihedral ¢ = 90°

(1725 172, 1/2)

1

JZ
/3

*Kasper 1, pp. 43-49.

1.41421

1.73205

~52-

(2, 2, 2)

4 4

y )z 5.65684
w7 6.92820
16 16

64 64



Vertices

Centre to mid edge

Centre to centre
of face

Centre to vertex
Edge

Mid edge to centre
of face

Mid edge to vertex

Mid edge to opposite
mid edge

Height (vertex to
centre of opposite
face)

Area of face

Yolume

Vertices

Edge
Centre to vertex
Centre to mid edge

Centre to centre
of face

Mid edge to near
vertex

Mid edge to distant
vertex

Area of face

Volume

(TABLE vi1)

TETRAHEDRON
V=4 F=4 E=¢6
Dihedral ¢ = 70°32'
LA TP W 1,0zl
(z72’ 77 777 zm 7
21, 1, 21 =1_, =1 N
(777 7T 2 ) [2/7 27
1
277 0.35355
1
275 0-.20412
/3
L 6-61237
1 1.00000
1
73 0.28868
/; 0.86603
1
Z 0.70711
/2
Et 0.81650
/3
¥ 0.43301
F;T 6.11785
(TABLE VvIII)
OCTAHEDRON
v 6 F=28 E =

L
bt

!
»-h
—

L8]
RS

12

Dihedral ¢ = 109°28"'

(*/% 0, o)

O

M N -

49

-
X

(0, /%
{0, 0, ’/&)

0.70711

0.50000

0-40825
0.86603

1.11803

0.4%3301

0.47140
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0)

‘S
MY
Ny Ay
)
N
N

&

R TR g - O e

T e

5

w
N

g

(+/3

Ne

A

2/%

2/5

0s 0)

(o, o,

2 -2 -2
(= 7
.2 .2 2
(/?' /Z’ /z)
1.4%1420

0.B1648

2.44948
4.00000

1,15472

3, 46412

2. 82844

3.25600

6.92816

7.542%0

(o, ’/%’ 0)
:/%)

2.82844

2.00000

1.63300
J.ubll2

4,47212

6.92816

30.16960



tp = 1 4 /5 = 1.61803; 1 = 0-13 p? -
Z o
1 1
(0, 8, =3} (30 9 25)

vertices?

Edge

Centre to vertex

Centre to mid edge

Centre to centre
of face

Area of face

Volume

Vertices?

Edge
Centre to vertex
Centre to mid edge

Centre to centre
of face

Area of face

Volume

(TABLE 1X)
ICOSAHEDRON
vy=12 F=20
Dihedral 2 = 138°12'

(*§ 3 0)

1 1
51/« 5

2 0.95106

& 0.80902

ik

0.75576
v 0.43301

sp?
3 2.18169
(TABLE X)

E =30

P+l p/S = 042

(0, xzp,:z)

(*Zps 22, 0)

(22, 0,220)

4 4
2(51/“)/5 3.80u24
2p 3.23608

2
3.02304

w/3 6.92816
160p%
3 139.62816

REGULAR (PENTAGONAL) DODECAHEDRON

v=20 F=12
Dihedral ¢+ = 116°34'

14 /5 = 1.61803; 1 = o1y p? =
vi P
2 2
(o, *2* %) (s3> *%0)
2 1
(5 0. '3  CFF )
1 1

ﬂl; 1.40126

2
% 1-30902
p5/2
2(s : } 1.11352
53/up3/2
i 1.72048

"
2—1; 7.66312
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E = 30

D+1; /T = p+2

(o, t2,2202)

(2203 0, 22)

20 /%

2p2

205/2

S

l.(53/'4 02/3]

3202 /%

(¢2, 202 o)

(t204 220, 22p)

5.60504

$.23608

L, 45408

27.52768

490.43968



(TABLE XI)
CUBOCTRAHEDRON
V=12 F=14 E = 24
Dihedral ¢ = 125°16'

Edge 1 1 b 4
| Centre to vertex 1 1 4 4
! Centre to mid edge /g 0.86603 2y3 3.46412
Centre to centre of N
1 square face /% 0.70711 /7 2,828u44
Centre to centre of ) 2
triangular face 3 0.81650 ~3 3,26600
Vertex to centre of N
square face /% 0.,70711 /5 2,8284Y
Vertex to centre of 1 \
triangular face /3 0.57735 e 2,30940
Area of square face 1 1 16 16
Area of triangular
face /E 0.43301 43 6.92816
2,35702 150.84928
Volume 572 320/2
3 3
(TABLE XII)
ICOSADODECAHEDRON
v =30 F = 36 E = 60
Dihedral ¢ = 142°§7'
P =1 /5 = 1.618033 1 = p=15 p° = p+1; p/5 = p+2
2 B
Edge 1 1 4 4
Centre to vertex p 1-6180 up 6.4720
Centre to mid edge 3.0777 § 1-5388 2°3.0777 6.1552
2
Centfe to centre of
triangular face o2-T% 1.5083 u/377$§T7 6.0332
Centre to centre of
pentagonal face Mpz-(l;lglilz 1.3764 wpt- (A2 5.5056
Vertex to centre of
triangular face 1 0.57735 4 2.2340
rx i 7
Yertex to centre of 1.7013 0.85065 2:1.7013 3.4020
pentagonal face ==
Midfe:g: to gent;e X 0.28867 ) L.1unes
of triangular face = . .
sl sl
Mid ed
ofepgzt:goﬁg?t;:ce 13784 0.68819 2°1-3764 2.75276
Area of al
r:ac: pentagon éﬂi:rﬂiii 1.72048 Y( g3/ p3/2) 27.52768
Area of triangular
face /3 0.43301 st 6.92816
y
Volume 53/ 9/97-(1.7013)2 4+ 14.991S u3(salu oo - [TIT3T%+ 959.4560
5
5 - pe-\= )
3ot T
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(TABLE XI1I)
PROPERTIES OF THE PLATONIC SOLIDS SPHERICALLY CIRCUMSCRIBED

Tetrahedron Cube Octahedron Dodecahedron

Vertices A 8 6 20
Facg? y [ 8 12
Edges 6 12 12 30

E.
Diameter of Sphere d d d d
Edge (1) 0.81655d 0.57735d 0.70710d 0.35662d
Area of face Ag 0.2887d2 0.3333d2 0.2165d? 0.2191d2
Area of Sphere Ag nd?2 nd? nd?2 wd?2
Area of Sphere

“face" A 0.785ud? 0.5236d2 0.3927d2 0.2618d2
Volume of Sphere V 0.5236d3 0.523a43 0.5236d3 0.5236d3
Volvﬁe of Phoyhedra 0.06u2d3 0.1925d3 0.1666d3 0.3479d?
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Icosahedron

12

20

3¢

d

0.52572d

0.1137d2
xd?

0.1571d2

0.5236d3

0.3170d3



